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Does the Velocity Autocorrelation Function 
Oscillate in a Hard-Sphere Crystal? 
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An approximate kinetic theory is used to compute the velocity autocorrelation 
function (VACF) in a hard-sphere crystal. In general the theory predicts that 
the VACF is oscillatory in time. However, in practice, near coexistence the 
oscillations will be difficult if not impossible to observe because by the time the 
oscillations occur the VACF has decayed almost to zero. At higher densities 
the theory predicts that the oscillations are probably just barely observable. In 
all cases the time integral of the VACF is zero. 

KEY WORDS:  Kinetic theory; velocity autocorrelation function; hard 
sphere crystal. 

1. I N T R O D U C T I O N  

In this paper I use hard-sphere kinetic theory to compute the velocity 
autocorrelation function (VACF) for a hard-sphere crystal. The calculation 
is based on the revised Enskog theory (RET) (see, e.g., ref. 1) for the crystal 
phase. (2) The motivation for using this approach and its limits of validity 
in the solid phase have been discussed elsewhere. (2) Basically, the RET is 
a mean field kinetic theory. In any phase it contains exact static properties. 
It is also exact in the high-dimensionality limit for all times and for short 
times in all dimensions. Therefore, in three-dimensional systems it is a 
qualitatively accurate theory when the physics is dominated by the 
short-time behavior and when there are no large long-time anomalies due 
to long-time tail effects and structural relaxation effects. Throughout this 
paper I assume that the RET is a reasonable first approximation theory 
in the solid state. Some additional remarks on this point are given in 
Section 3. 
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The particular question addressed in this paper is whether or not the 
VACF oscillates in a hard-sphere crystal. For any smooth potential there 
is overwhelming evidence that the VACF always oscillates in the solid 
phase. For example, if the thermal vibrations in a crystal can be 
approximated by a harmonic theory, then the structure in the VACF is 
intimately related to the phonon spectrum (see, e.g., ref. 3). Even in 
standard simple fluids which interact through harsh, but continuous, 
potentials where a harmonic approximation is problematic there is ample 
evidence that in the solid phase the VACF will oscillate. Already in the 
dense fluid and supercooled fluid phases the VACF oscillates with a 
characteristic solidlike behavior at short times. (4'5) As the interparticle 
potential becomes softer, the oscillations in general become more 
pronounced. (6) An extreme case of a soft potential is the Yukawa fluid, 
which has been used as a model for colloids. For this fluid the VACF 
exhibits very pronounced oscillations. (7's~ 

For hard-sphere crystals the situation is less clear. They are the most 
anharmonic solid conceivable. For example, standard expressions (3) for 
elastic coefficients do not exist for a hard-sphere crystal because the 
hard-sphere potential is not differentiable. To my knowledge there are no 
published molecular dynamics results which indicate that the VACF 
oscillates in dense, hard-sphere systems. Detailed comments on available 
computer experimental results will be given in Section 3. Using the RET, I 
give theoretical arguments that suggest that although in general the VACF 
oscillates in a hard-sphere crystal, in practice the oscillations will be 
difficult to detect. Structurally the RET leads to a harmoniclike equation 
for the VACF, but the magnitude of the damping term is comparable to 
the spring constant term. The net result is either overdamped or strongly 
damped oscillations in the VACF. I stress that these results are only 
suggestive because the RET is only an approximate equation. It is possible 
that more complicated correlation effects, which are neglected in the RET, 
could lead to more pronounced and longer-lived oscillations in the VACF 
in the hard-sphere crystal. Also note that if the calculations given here 
are qualitatively accurate, then whether or not the VACF oscillates in a 
hard-sphere crystal is a matter of detail and conceptually there is no 
difference between a hard-sphere crystal and other crystals as far as the 
VACF is concerned. 

2. BASIC THEORY A N D  A P P R O X I M A T E  SOLUTION 

In Section 2.1 the RET for self-correlations in a hard-sphere crystal is 
given. In Section 2.2 a low-order moment solution method is used to 
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reduce the kinetic equation for the VACF to a differential equation in real 
space. In Section 2.3 this differential equation is approximately solved. 

2.1. The Kinetic Equation 

The revised Enskog kinetic equation for self-correlation functions in 
an equilibrium hard-sphere crystal is ~) 

[~,+v~-v~] Cs(lt; 1') 

= f  d2 T_(12) n~q(X2) ~beq(V2) Gz[x~, x2ln~q] C~(lt; 1') (2.1a) 

Here 1 = x~, Vx is a point in # space and C s is the self-correlation function, 

Cs(lt; 1')= 6[-X 1 -- r,(t)] cS[Va- v~(t)] 6 [x l - - r , ]  6IV i - v i i  (2.1b) 
i 1 

where the angular brackets denote an equilibrium canonical ensemble 
average and (ri, v~) is the phase of particle i in an N-particle system. In 
Eq. (2.1a), neq(X ) is the thermally-averaged, spatially-dependent equi- 
librium number density in the crystal phase, ~b~q(V) is the Maxwell dis- 
tribution function in velocity space, and G2 is related to the equilibrium 
spatial two-point distribution function f2 by 

f2(Xl,  X2) = 0(X12 -- 0") neq(X1) neq(X2) G2[X1, x2lneq ] (2.1c) 

and it depends functionally on neq(x). Here O(x)= 1 for x > 0 and is zero 
otherwise. T ( 1 2 )  in Eq. (2.1a) is a hard-sphere collision operator that is 
given by (9) 

T_(12)=a2 f d60(V12 "~) IV12"~I [6(x~2-~)/~-6(Xl2+~)]  (2.2a) 

with cr =~r6, o" is the hard-sphere diameter, V~2 = V 1 - V 2 ,  and b is an 
operator that changes velocities into postcollisional velocities, 

/ ~ V l = V l  - -~(V12" ~ ) 

b V  2 = V 2 -4- ~(V12 ~ ~) 
(2.2b) 

The VACF is given in terms of Cs by 

C~,(t)= f dl dl' V~V'I~,C~(lt; 1') 

= vi~(t) vi~, (2.3a) 
i 1 
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For the hard-sphere fcc crystal phase C~, is diagonal in the vector 
labels ~ and ~'. Below I show that the VACF is coupled to the spatially 
dependent correlation functions 

C~,(x~, t ) -  f dV~ dl' VI~V'I~,Cs(lt; I') 

= 6[xl  - ri(t)] vi~(t) vi~, (2.3b) 
i 1 

and 

P~,(xl, t ) -  f dV~ dl '  V'l~ Cs( lt; 1') 

= 6[x 1 - ri(t)] vi~, (2.3c) 
i 1 

Finally, because the variable 1' in Eq. (2.1a) is not acted on by the kinetic 
operators and because we are interested in the correlation functions given 
by Eqs. (2.3), it is convenient to multiply Eq. (2.1a) by V'~, and integrate 
over 1' to obtain an identical kinetic equation for 

Cs~,(lt) =- f dl' V~,Cs(lt; 1') 

= ~ [ x l -  ri(t)] J [ V ~ -  v~(t)] v,~, (2.4) 
i 1 

From equilibrium statistical mechanics it follows that the initial values of 
the correlation functions defined by Eqs. (2.3) and (2.4) are given by 

Vno 
C~,(t = O) = flom 6~, (2.5a) 

and 

C~,(x, ,  t=0)---- neq(X1) 6~=, (2.5b) 
flom 

and 

and 

Pa,(Xl,  t = 0) = 0 (2.5c) 

C~=,(1, t = 0 ) =  ncq(Xl) ~eq(V1) VI~, (2.5d) 

Here V is the system volume (the bulk limit is always implied), no is the 
spatially averaged solid state number density, f l o l =  kB To is the inverse 
equilibrium temperature, and m is the particle mass. 
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2.2. Moment  Solution and Formal Equation of Motion 

A standard way to solve kinetic equations (see, e.g., ref. 10) is to 
expand the distribution function, here C~,, in terms of a complete set of 
polynomial functions of velocity, with coefficients that depend on space 
and time. With this and the kinetic equation, one can derive an infinite set 
of coupled space- and time-dependent differential equations for these 
coefficients. Usually one truncates the set of equations at some order n by 
setting all but the first n coefficients equal to zero. In the liquid state the 
interesting self-correlation functions, i.e., the self-density correlation 
function and the VACF, can be quantitatively computed for wavenumbers 
less than the inverse mean free path by using only two moments. ~m There 
is no reason that this aspect of solving Eq. (2.1a) should not also be valid 
in the solid state. Accordingly, we write 

Cs~,(lt) = {P~,(xl, t)WflomVl~C~,(Xl,  t)} ~eq(Vl) (2.6) 

where the factors have been chosen such that Eqs. (2.3), (2.4), and (2.6) are 
consistent. The validity of this low-order moment solution will be discussed 
further in Section 3. Inserting Eq. (2.6) into the kinetic equation for C~,(lt) 
and integrating over V1 after multiplying by 1 and VI~ leads to two 
coupled equations for P~, and C~, that are given by 

and 

cg,P~,(x~, t) + ~ C~c~,(Xl, t) = 0 (2.7a) 

t)+neq(Xl) a P~,(x 1,t) 
8,C~,(Xl, 

flora aXlct neq(X1) 

+ (~Zflom)l/2202 f d~ ~neq(Xl-~) G2[Xl, X2-~lneq] CT~,(x 1, t )=0  

(2.7b) 

Equation (2.7a) is just the exact conservation law for self-density fluc- 
tuations and Eq. (2.7b) is a relaxational-like equation for C~.. To obtain 
a single equation for C~,(xl, t) from which the VACF can be obtained by 
integrating, or averaging, over space [cf. Eqs. (2.3)], we use Laplace trans- 
form techniques. For an arbitrary function f(t),  we define the Laplace 
transform by 

f ( z )  = dt e-Z~f(t) (2.8) 
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Equations (2.7) and the initial conditions given by Eqs. (2.5) yield the 
closed equation 

z2C~ce(Xl, 2) neq(Xl) a 1 a 
/~om axl~ neq(X1) aXly C 7 c r  Z) 

+ (nflom)l/22a2z fd~d~drneq(Xl-a) Gz[xl,x2-akneq] Cr~,(x 1 , z) 

= Zneq(Xl) 6~, (2.9) 
/~0m 

If we define the normalized VACF by 

C~,(t) = flom C~,(t) fl~ 
Vno = no V 3 dxl C~'(xl '  t) (2.10a) 

then Eq. (2.9) gives 

no--V ~ OXla~ 3X17 no 

x ~ dxl d~ #~6~ C~,(x 1, z) rteq(X 1 -- r G2[ 'xI,  X 2 - -  O'l neq ] 

=z6~, (2.10b) 

Equation (2.10b) indicates that in the solid state C~, is coupled to the 
inhomogeneous correlation function C~,(Xl, z) due to the broken transla- 
tional symmetry. 

2.3. Approximate Solution 

The simplest reasonable approximation to solve Eq. (2.9) is to assume 

Ccccg(X1, t)= neq(X1) C~,(t) (2.11) 
/~om 

i.e., the spatial and velocity degrees of freedom in Eq. (2.3b) decouple. 
Equation (2.1 1 ) can be easily shown to be exact at short times. In addition, 
it is shown below that Eq. (2.11) also leads to a long-time result that is 
consistent with current equilibrium theories of the solid state (see ref. 12 for 
a recent review). A more detailed discussion on the validity of Eq. (2.11) 
and corrections to it will be given below and in Section 3. Also note that 
Eq. (2.11) is equivalent to assuming that the time dependence of P~,(Xl, t) 
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is given by neq(X1) at  a time-dependent displaced position. This physically 
correct notion can be seen by using Eq. (2.11) in Eq. (2.7a). 

Inserting Eq. (2.11) into Eq. (2.10b) leads to a damped oscillator 
equation for C~,(z), 

[z ~ + co~ + z/~] C~,(z)  = z6~, (2.12a) 

with the frequency coo given by 

c o ~ 5  = 1 alog neq(xl) flomno V f dxl c3neq(Xl) (2.12b) 
(9x1~ c3x~ 

and the relaxation time ~ is given by 

z 16~ = 2a 2 1 f 
no(flomVr)i/2 ~, dxl db (T~(77/leq(Xl) F/eq(lK 1 - -  ~') G2[x1,  X 2 - -  a Jneq ] 

(2.12c) 

Equations (2.12b) and (2.12c) are diagonal in the vector labels because of 
the cubic symmetry of a hard-sphere crystal. Equation (2.12a) is an equa- 
tion one would write down phenomenologically for self-correlations in a 
harmonic system. In this sense, and in others, ~ the hard-sphere crystal 
is similar to a harmonic crystal. The crucial distinction we shall find is that 
the damping (or relaxation time r) is very large (small). In dimensionless 
variables, the damping term in Eq. (2.12a) is of the same order as the 
spring constant term (--~co~). 

The parameters given by Eqs. (2.12b) and (2.12c) can be easily related 
to known equilibrium functions. The relaxation time is given in terms of 
the solid state pressure Ps bY (2) 

17 t 

with 

4F1 
a(flom~ )l/2 (2.13a) 

P~ F , =  - -  - 1 (2.13b) 
nokBTo 

Equation (2.12b) for the frequency co o can be related to the current density 
functional theories (12) of the solid state. These theories (12'15) pararnetrize 
neq(Xj) by the spatially averaged density no, a lattice constant a, and a 
Gaussian width variable c~, 

,,o I-Ix-R)= l 
neq(X ) : 7zl/2~3/2 R~ exp 0~a2 .j (2.14a) 



490 Kirkpatrick 

0.4 

0,3 

0.2 

 ~ 
IQ) / \ s 1o ,~ 2o 2~ 

0 / ~ 1  I I I I 

-0.2 L 

( a )  

3O i 
t g 

0.4 

0.3 

0.2 

tO.I_ / 
led 5 I0 15 20 

-0.1 r i  

-0.2 
(b) 

2 5  30 

Fig. 1. VACF at a density (a) n o = 0.7nov, ( b ) n  o = 0.736ncp, and ( c )n  o = 0.9nov. 
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Fig. ! (continued) 

Here R are the Bravais lattice vectors that generate an ideal fcc lattice. In 
practice, the Gaussian width variable is very small, which indicates that 
particles are extremely localized in a hard-sphere crystal. Also note that the 
parametrization of neq(X ) given by Eq. (2.14a) is in the spirit of an Einstein- 
oscillator approximation because there is only one frequency (related to e). 
This in turn is consistent with the simplicity of Eq. (2.12a). In the small-~ 
limit, Eq. (2.12b) is easily evaluated with Eq. (2.14a) and one obtains 

2 
oJ 2 - flomc~a 2 (2.14b) 

Equation (2.12a) implies that the time integral of the VACF vanishes, 
which in turn implies zero self-diffusion coefficient in the solid state. This 
is clearly a general feature of Eqs. (2.9) and (2.10). If we define a dimen- 
sionless time by t * - t / t E ,  with tE= a(f lom~Z)l/2/6F1 the Enskog collision 
time in the solid state, then in the time domain Eqs. (2.12)-(2.14) give 

C ( t * )  - C x x ( t )  = (1/2F){(1 + F) e x p [ -  (1 + r ) t* /3]  

- ( 1 - F ) e x p [ - - ( 1 - F ) t * / 3 ] }  (2.15a) 

822/57/3-4-5 
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with 

V = (1 - 7zry2/2F20~a2) 1/2 (2.15b) 

In principle, the VACF oscillates if F is imaginary and it is purely exponen- 
tial if F is real. Note that the liquid state limit is e ~ oe or F ~ 1, where 
Eq. (2.15a) reduces to the standard Enskog result, C( t* )=  exp(-2t* /3) .  

To determine if F is real or imaginary in general, we consider the 
hard-sphere crystal at three different densities. If ncp is the crystal 
close-packed density, then the densities considered are no=0.7nop, 
0.736ncp, and 0.9nop. Physically they correspond to a metastable crystal, a 
crystal at its equilibrium coexistence density, and a crystal far from the 
solid-to-fluid transition density, respectively. For these states the 
parameters which determine F [Eq. (2.15b)] are taken from molecular 
dynamics experiments. From the hard-sphere pressure results ~16) one 
obtains F1=9.0,  10.223, and 28.69, respectively. From mean-squared 
displacement results (13) and Eq. (2.14a) one obtains (R2)/o "2= 
(3c~/2)(a/a)2= 0.0312, 0.0186, and 0.0015, respectively. These numbers and 
Eq. (2.15b) yield F=0.26 ,  0.461i, and 0.953i, respectively. This indicates 
that in the entire equilibrium crystal phase the VACF is oscillatory. For 
these densities the VACF is graphed in Fig. 1. In practice we see that 
theory predicts that the oscillations near coexistence will be difficult if not 
impossible to detect (by the time they occur the VACF has decayed almost 
to zero) and that at higher densities they will be barely detectable. 

Finally, we note that the consistency of Eqs. (2.11) and (2.14) can be 
checked dynamically by using Eqs. (2.15) to compute the mean-squared 
displacement. Using 

C==(Itl-t2[)=( ~, v,(t~)'v~(t2) I 
i = 1  

(2.16a) 

and integrating over t 1 and t2 between zero and t and then letting t --, oe, 
one obtains 

/ N / 
2 N ( R Z ) = l i m  ~ [ r ; ( t ) - r i 32  =3c~aZN (2.16b) 

i = 1  

where N" is the average number of particles. Equation (2.16b) is consistent 
with Eq. (2.14a) and it indicates that Eq. (2.11) is not only exact for short 
times, but that it is also dynamically consistent for long times. This connec- 
tion is possible because of the small-c~ approximation used in obtaining 
Eq. (2.14b). This suggests that Eq. (2.11) might become exact as ~ ~ 0. 
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3. D I S C U S S I O N  

I conclude with a number of remarks. 

1. As far as I am aware, there are no published molecular dynamics 
(MD) data for the VACF in a hard-sphere crystal.; For a very dense, 
essentially glassy, hard-sphere system S. Brawer (unpublished results) has 
used MD to compute the VACF. For technical reasons (to avoid possible 
crystallization), he actually considered a two-component hard-sphere 
system. However, the fraction of the minority component was very small. 
Even at an effective reduced density of n o  a 3 ~  - 1.10 (hard-sphere crystal- 
fluid coexistence is at n0o3_ ~ 1.04) he observed no oscillations in the 
VACF. In fact, his results were very similar to the theoretical VACF shown 
in Fig. lb. This is probably reasonable. On computer time scales one does 
not expect a large difference between the VACF in a glass and in a crystal. 
Brawer's results therefore support the idea that in hard-sphere systems the 
oscillations in the VACF are very small. 

2. Some caveats are in order. First, Eq. (2.1a) is only an approximate 
kinetic equation. It completely neglects velocity correlation effects which 
are always present in dynamical quantities. 3 It does, however, exactly treat 
the static correlation effects that lead to the solid state. (2) In principle, an 
RET description will always lead to exact results for equilibriumlike quan- 
tities such as spring constants and elastic coefficients and to approximate 
results for damping rates and transport coefficients. The assumption used 
in this paper is that even in the solid state, the RET is a reasonable first 
approximation theory. The general problem of fluctuation (or velocity 
correlation) effects in the solid state remains to be investigated. It is 
possible that recollision effects neglected in Eq. (2.1a) could lead to a 
reduced (effective) damping rate in a generalized Eq. (2.12a). The oscilla- 
tions in the VACF would then be more pronounced. To investigate fluctua- 
tion effects in the solid state it is probably simplest to use phenomenologi- 
cal ideas as in, for example, ref. 18. In this context, the RET results are 
interpreted as the bare theory results. 

Second, even given Eq. (2.ta) as the starting kinetic equation, several 
approximations have been made in obtaining Eq.(2.12a). First, a 
low-moment solution method has been used [cf. Eq. (2.6)]. I have tried to 
improve upon Eq. (2.6) by including self-temperature (or energy) fluctua- 
tions ( ~  V 2) as well as self-density and self-momentum density fluctuations. 
Again using Eq. (2.11), the generalization of Eq. (2.12a) turns out to be a 
cubic equation in the Laplace transform variable z. For all densities, the 

2 1 thank J. J. Erpenbeck and B. J. Adler for discussions on this point. 
3 The classic example is the long time tail effectJ ~7) 
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cubic equation has one real root and two complex conjugate roots. This 
indicates that in principle the VACF oscillates at all the densities con- 
sidered in Section 2. However, evaluation of C(t*) within this approxima- 
tion leads to curves which are essentially identical to those in Fig. 1 that 
were obtained using Eq. (2.6). I conclude that the results of the 
two-moment solution are stable in the sense that including additional 
moments does not appreciably modify the results. 

A more serious approximation, given Eq. (2.1a), appears to be 
Eq. (2.11). Some discussion on this point was already given in Section 2.3. 
Additional insight can be gained by using the fact that Eq. (2.9) implies 
that C~(x~, z) must have the periodicity of the underlying lattice. If 
Eq. (2.11) is generalized to 

neq(Xl) 
C~,(xl,  t )=  flo m ff~,(x 1, t) (3.1a) 

then the unknown function ~ ,  can be expanded in reciprocal lattice 
vectors G of the equilibrium lattice, 

~b~,(Xl, t) = ~ #~,(G, t) exp[iG �9 xl ]  (3.1b) 
G 

If we also represent rteq(X ) in terms of reciprocal lattice vectors 

r/eq(Xl) = no E qbG e x p [ i G  �9 xl]  (3.1c) 
G 

then the VACF is 

C ~ , ( t ) = ~ q b  GkG~,(G, t) (3.1d) 
G 

with q~G=exp[--GZea2/4]  from Eq. (2.14a). Inserting Eq.(3.1b) into 
Eq. (2.9) leads to coupled Bloch-like (3~ equations for the expansion coef- 
ficients /z~,(G, z). Note that, for an extremely well-ordered solid like a 
hard-sphere crystal an expansion in terms of a few reciprocal lattice vectors 
is not correct. From these coupled equations the following can be con- 
cluded. If the Fourier components with GZo~a 2 > 1 are neglected, then in the 
c~--.0 limit the equation for the VACF reduces to Eq. (2.12a). This is in 
accord with the discussion at the end of Section 2.3. We next examine some 
of the possible consequences of the neglected Fourier components. First, 
they are exponentially damped in Eq. (3.1d) due to the q~G factor. Second, 
the moment expansion leading to Eq. (2.1a) becomes problematic for large 
wavenumbers. (1~ There is no physical reason to focus on a few low-order 
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moments when the length scales become smaller than ao~ 1/2. In terms of 
liquid-state ideas, this scale is essentially a mean free path distance between 
hard-sphere collisions. I conclude that the calculation given in Section 2 is 
at least consistent. 

3. The mathematical cause of the negative part of the VACF in the 
solid state is the spring constant term (,-~co 2) in Eq. (2.12a), or equiva- 
lently, the second term on the left-hand side of Eq. (2.7b), with r/eq(X ) 

spatially dependent. It is interesting to note that in (dense) liquid-state 
physics a reinterpreted Eq. (2.7b) also leads (18) to the negative part of the 
VACF. The main idea is to interpret Eq. (2.7b) as a fluctuating equation 
for the self-momentum density and neq(X ) ---~n(X, t) as a fluctuating (in 
space and time) fluid number density. 4 Because n(x, t) decays slowly on the 
Enskog time scale, there is a restricted range of times where the fluid and 
solid state are very similar as far as the VACF is concerned. 5 A general 
point here is that effects that are due to fluctuations in the liquid state 
become more trivial average effects in the solid state. 
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